Wednesday, November 20, 2019

Learning Datascience -Day 3


DAY 3
import numpy as np
import pandas as pd
In [2]:
arr1=np.arange(1,11)
In [3]:
arr1
Out[3]:
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])
In [4]:
arr1>5
Out[4]:
array([False, False, False, False, False,  True,  True,  True,  True,
        True])
In [7]:
arr1[arr1>5]
Out[7]:
array([ 6,  7,  8,  9, 10])
In [8]:
a=np.array([1,6,9,2,5,4,2,3,8,6,9,10])
In [9]:
np.argsort(a)
Out[9]:
array([ 0,  3,  6,  7,  5,  4,  1,  9,  8,  2, 10, 11], dtype=int64)
In [11]:
a.min()
Out[11]:
1
In [12]:
np.argmin(a)
Out[12]:
0
In [13]:
np.argmax(a)
Out[13]:
11
In [14]:
a.mean()
Out[14]:
5.416666666666667
In [15]:
data=[10,20,30,40]
data
Out[15]:
[10, 20, 30, 40]
In [16]:
s1=pd.Series(data)
In [18]:
s1
Out[18]:
0    10
1    20
2    30
3    40
dtype: int64
In [19]:
index=['a','b','c','d']
In [25]:
s2=pd.Series(data,index)
s2
Out[26]:
a    10
b    20
c    30
d    40
dtype: int64
In [28]:
dict1={'a':11,'b':12,'c':13}
In [29]:
s3=pd.Series(dict1)
In [30]:
s3
Out[30]:
a    11
b    12
c    13
dtype: int64
In [31]:
s4=pd.Series({'c':10,'d':20,'e':30})
In [32]:
s4
Out[32]:
c    10
d    20
e    30
dtype: int64
In [33]:
s3+s4
Out[33]:
a     NaN
b     NaN
c    23.0
d     NaN
e     NaN
dtype: float64
In [34]:
s3-s4
Out[34]:
a    NaN
b    NaN
c    3.0
d    NaN
e    NaN
dtype: float64
In [36]:
narr1=np.random.rand(5,4)
In [38]:
narr1
Out[38]:
array([[0.05277813, 0.35541549, 0.4595262 , 0.13518939],
       [0.32446629, 0.57589738, 0.50625952, 0.08349814],
       [0.60519331, 0.17721401, 0.1648621 , 0.76239377],
       [0.30760757, 0.43770451, 0.97628912, 0.61693768],
       [0.21756238, 0.08596773, 0.28403506, 0.14878118]])
In [39]:
index=['a','b','c','d','e']
In [40]:
df=pd.DataFrame(narr1,index)
In [41]:
df
Out[41]:
0
1
2
3
a
0.052778
0.355415
0.459526
0.135189
b
0.324466
0.575897
0.506260
0.083498
c
0.605193
0.177214
0.164862
0.762394
d
0.307608
0.437705
0.976289
0.616938
e
0.217562
0.085968
0.284035
0.148781
In [42]:
col=['c1','c2','c3','c4']
In [43]:
df1=pd.DataFrame(narr1,index,col)
In [44]:
df1
Out[44]:
c1
c2
c3
c4
a
0.052778
0.355415
0.459526
0.135189
b
0.324466
0.575897
0.506260
0.083498
c
0.605193
0.177214
0.164862
0.762394
d
0.307608
0.437705
0.976289
0.616938
e
0.217562
0.085968
0.284035
0.148781
In [46]:
df.to_excel("test1.xlsx")
In [ ]:


No comments:

Post a Comment

Featured Post

Ichimoku cloud

Here how you read a ichimoku cloud 1) Blue Converse line: It measures short term trend. it also shows minor support or resistance. Its ve...