DAY 3
import numpy as np
import pandas as
pd
In [2]:
arr1=np.arange(1,11)
In [3]:
arr1
Out[3]:
array([ 1, 2,
3, 4, 5,
6, 7, 8, 9,
10])
In [4]:
arr1>5
Out[4]:
array([False, False, False,
False, False, True, True,
True, True,
True])
In [7]:
arr1[arr1>5]
Out[7]:
array([ 6, 7,
8, 9, 10])
In [8]:
a=np.array([1,6,9,2,5,4,2,3,8,6,9,10])
In [9]:
np.argsort(a)
Out[9]:
array([ 0, 3,
6, 7, 5,
4, 1, 9,
8, 2, 10, 11], dtype=int64)
In [11]:
a.min()
Out[11]:
1
In [12]:
np.argmin(a)
Out[12]:
0
In [13]:
np.argmax(a)
Out[13]:
11
In [14]:
a.mean()
Out[14]:
5.416666666666667
In [15]:
data=[10,20,30,40]
data
Out[15]:
[10, 20, 30, 40]
In [16]:
s1=pd.Series(data)
In [18]:
s1
Out[18]:
0 10
1 20
2 30
3 40
dtype: int64
In [19]:
index=['a','b','c','d']
In [25]:
s2=pd.Series(data,index)
s2
Out[26]:
a 10
b 20
c 30
d 40
dtype: int64
In [28]:
dict1={'a':11,'b':12,'c':13}
In [29]:
s3=pd.Series(dict1)
In [30]:
s3
Out[30]:
a 11
b 12
c 13
dtype: int64
In [31]:
s4=pd.Series({'c':10,'d':20,'e':30})
In [32]:
s4
Out[32]:
c 10
d 20
e 30
dtype: int64
In [33]:
s3+s4
Out[33]:
a NaN
b NaN
c 23.0
d NaN
e NaN
dtype: float64
In [34]:
s3-s4
Out[34]:
a NaN
b NaN
c 3.0
d NaN
e NaN
dtype: float64
In [36]:
narr1=np.random.rand(5,4)
In [38]:
narr1
Out[38]:
array([[0.05277813,
0.35541549, 0.4595262 , 0.13518939],
[0.32446629, 0.57589738, 0.50625952,
0.08349814],
[0.60519331, 0.17721401, 0.1648621 , 0.76239377],
[0.30760757, 0.43770451, 0.97628912,
0.61693768],
[0.21756238, 0.08596773, 0.28403506,
0.14878118]])
In [39]:
index=['a','b','c','d','e']
In [40]:
df=pd.DataFrame(narr1,index)
In [41]:
df
Out[41]:
|
0
|
1
|
2
|
3
|
|
|
a
|
0.052778
|
0.355415
|
0.459526
|
0.135189
|
|
b
|
0.324466
|
0.575897
|
0.506260
|
0.083498
|
|
c
|
0.605193
|
0.177214
|
0.164862
|
0.762394
|
|
d
|
0.307608
|
0.437705
|
0.976289
|
0.616938
|
|
e
|
0.217562
|
0.085968
|
0.284035
|
0.148781
|
In [42]:
col=['c1','c2','c3','c4']
In [43]:
df1=pd.DataFrame(narr1,index,col)
In [44]:
df1
Out[44]:
|
c1
|
c2
|
c3
|
c4
|
|
|
a
|
0.052778
|
0.355415
|
0.459526
|
0.135189
|
|
b
|
0.324466
|
0.575897
|
0.506260
|
0.083498
|
|
c
|
0.605193
|
0.177214
|
0.164862
|
0.762394
|
|
d
|
0.307608
|
0.437705
|
0.976289
|
0.616938
|
|
e
|
0.217562
|
0.085968
|
0.284035
|
0.148781
|
In [46]:
df.to_excel("test1.xlsx")
In [ ]:
No comments:
Post a Comment