In [1]:
#decision tree can be used as regressor as well as classifier
In [2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [3]:
from sklearn import datasets,metrics
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
In [4]:
diabetes=datasets.load_diabetes()
In [5]:
print(diabetes.DESCR)
In [6]:
x=diabetes.data
y=diabetes.target
In [7]:
df=pd.DataFrame(x,columns=diabetes.feature_names)
df['target']=y
df.head()
Out[7]:
In [8]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=101)
In [9]:
regressor=DecisionTreeRegressor(random_state=101)
In [10]:
regressor.fit(x_train,y_train)
Out[10]:
In [11]:
y_prediction=regressor.predict(x_test)
In [12]:
y_prediction
Out[12]:
In [13]:
new_prediction=regressor.predict([[0.038076,0.050680,0.061696,0.021872,-.044223,-0.034821,-0.043401,-0.002592,0.019908,-0.017646]])
In [14]:
new_prediction
Out[14]:
In [15]:
metrics.mean_squared_error(y_test,y_prediction)
Out[15]:
In [17]:
np.sqrt(metrics.mean_squared_error(y_test,y_prediction))
Out[17]:
In [18]:
y_test.std()
Out[18]:
In [20]:
#now we will use decision tree as classifier
In [21]:
from sklearn.tree import DecisionTreeClassifier
In [22]:
iris=datasets.load_iris()
In [23]:
print(iris.DESCR)
In [24]:
x=iris.data
y=iris.target
In [25]:
df1=pd.DataFrame(x,columns=iris.feature_names)
df1['target']=y
df1.head()
Out[25]:
In [26]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=101)
In [27]:
clf=DecisionTreeClassifier(random_state=101)
In [28]:
clf.fit(x_train,y_train)
Out[28]:
In [29]:
y_pred=clf.predict(x_test)
In [30]:
metrics.accuracy_score(y_test,y_pred)
Out[30]:
In [31]:
metrics.confusion_matrix(y_test,y_pred)
Out[31]:
In [32]:
y_pred
Out[32]:
In [ ]:
No comments:
Post a Comment