Thursday, January 16, 2020

machine learning Last session

In [1]:
import pandas as pd
In [3]:
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [6]:
data=pd.read_csv('data.csv',index_col=0)
data.head()
Out[6]:
xycluster
0-8.482852-5.6033492
1-7.751632-8.4053342
2-10.967098-9.0327822
3-11.999447-7.6067342
4-1.73681010.4780151
In [7]:
data['cluster'].value_counts()
Out[7]:
1    67
0    67
2    66
Name: cluster, dtype: int64
In [8]:
plt.scatter(data['x'],data['y'],c=data['cluster'])
Out[8]:
<matplotlib.collections.PathCollection at 0x2793648d748>
In [9]:
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
In [14]:
X=data[['x','y']]
y=data['cluster']
In [15]:
scaler=StandardScaler()
X=scaler.fit_transform(x
                      )
In [16]:
X
Out[16]:
array([[-1.01200363, -0.60606415],
       [-0.86550679, -1.04265203],
       [-1.5097118 , -1.14041707],
       [-1.71653856, -0.91821912],
       [ 0.33953731,  1.89963378],
       [ 0.38183922,  1.1890842 ],
       [ 0.24668446, -0.74232845],
       [-1.44313178, -0.76182643],
       [ 0.32130834, -0.75849023],
       [ 0.83110494,  1.27684537],
       [ 0.31775088, -0.39338956],
       [ 1.20365218, -0.4290876 ],
       [-0.07305683,  1.51966781],
       [ 0.63827173,  0.98134203],
       [ 1.52205697, -0.42280098],
       [ 0.17043691,  1.06578799],
       [ 1.5381542 , -0.52935538],
       [ 0.27161133, -0.71651135],
       [-1.35289151, -0.93641563],
       [ 0.79308339, -0.35212834],
       [ 0.14633873,  2.31330628],
       [ 1.14228061, -0.30354302],
       [ 1.12503491, -0.04177872],
       [-1.17977302, -1.09578279],
       [-2.01238779, -0.86540408],
       [ 0.19152374,  1.57228952],
       [ 0.83261025,  1.80799546],
       [ 0.66508288, -0.6110459 ],
       [-1.12827817, -0.15250042],
       [ 0.52241815, -0.65585313],
       [ 1.08583214,  0.93547726],
       [-0.97693538, -0.88741691],
       [-1.33595694, -0.63086238],
       [ 0.19953335,  1.28083486],
       [-0.94950185, -0.56065403],
       [ 0.66982823, -0.13484351],
       [ 0.771665  , -0.5499059 ],
       [ 0.2774257 ,  1.22860396],
       [-0.73472586, -1.2187408 ],
       [-0.63187335, -1.00655651],
       [-0.69416438, -1.0000677 ],
       [ 0.83271023, -0.6731856 ],
       [-1.23344655, -1.15789171],
       [ 0.65096239, -0.19455043],
       [-1.39325586, -1.1523753 ],
       [-1.49484828, -0.92704231],
       [-1.45695253, -0.70502951],
       [ 0.5305949 ,  0.81280245],
       [ 0.83400406, -0.42253729],
       [ 0.48904363,  1.24633059],
       [ 1.23175068, -0.82532629],
       [ 0.69624505, -0.30159923],
       [ 0.39391193, -0.396964  ],
       [ 0.79094876,  1.60143791],
       [ 0.15899074,  1.26432118],
       [ 0.39413305,  1.76704755],
       [ 0.86405762, -0.59555499],
       [-2.03584663, -0.69245567],
       [ 0.59854512,  1.21885094],
       [ 0.46524738,  1.14933569],
       [ 1.13205009, -0.79021258],
       [-0.43326051,  1.24378251],
       [ 1.18403178, -0.2105801 ],
       [ 1.104018  , -0.45293091],
       [ 0.90917625, -0.41741704],
       [ 0.24940112,  1.47054385],
       [-1.34378511, -0.96019197],
       [-1.15864684, -0.53793509],
       [-1.38106913, -1.24446575],
       [ 1.32888112, -0.15656749],
       [-1.97542172, -0.86113934],
       [ 0.55709844,  0.94043404],
       [-1.16375964, -1.04708045],
       [-0.92116118, -0.60408404],
       [ 0.19744613, -0.320971  ],
       [-1.17058201, -0.94932292],
       [-1.30394578, -0.6337949 ],
       [-1.3764337 , -0.98303292],
       [ 0.29643725, -0.16983389],
       [-1.48660911, -1.07632091],
       [ 0.88544854,  0.85471602],
       [ 0.9006815 , -0.4157147 ],
       [ 0.2206326 ,  1.52350226],
       [ 1.13326512,  1.24514921],
       [ 1.59514484, -0.57810326],
       [ 0.15529192, -0.46145428],
       [ 1.07078756, -0.73342709],
       [-1.84390846, -0.81992791],
       [ 0.90990583,  1.40916629],
       [ 0.3576306 , -0.73136536],
       [ 1.29042424, -0.89780574],
       [-1.36084266, -0.77007109],
       [-1.0236826 , -1.24868072],
       [ 0.7946996 , -1.12120567],
       [ 0.79884711,  1.66676256],
       [ 0.99941321,  1.13889426],
       [-1.36837982, -1.15198567],
       [-0.3156759 , -1.46559894],
       [ 0.70861868, -0.75627388],
       [-0.21082427, -0.41430294],
       [ 0.32589705,  1.68264012],
       [ 0.66619897,  1.21855463],
       [ 0.49361345,  0.86887702],
       [ 0.5068162 , -0.32337893],
       [ 0.74177357, -0.61694863],
       [-1.2885399 , -0.96008709],
       [ 1.02551131,  1.48533141],
       [ 0.43201879,  1.6076944 ],
       [ 1.08249536, -0.21716763],
       [-0.15265406,  0.0228466 ],
       [ 0.97586982, -0.63467294],
       [-1.10238107, -0.75993911],
       [ 0.24621536, -0.32010977],
       [ 0.53736804,  1.0345916 ],
       [ 1.21425236,  1.07790672],
       [-0.00967353,  1.27374229],
       [ 0.53207638,  1.10912864],
       [-2.00277598, -1.07059812],
       [ 1.33013807, -0.90971954],
       [-1.25463745, -1.18101253],
       [ 0.53775645,  1.29669311],
       [ 0.27952731, -0.01116382],
       [ 0.32201814,  1.62673893],
       [ 0.4329941 , -0.57783171],
       [ 0.57365299,  1.3368478 ],
       [ 0.65082523,  1.46367753],
       [ 0.65445327,  1.46194122],
       [ 0.30583921,  0.15038392],
       [ 0.58866226, -0.19466067],
       [ 0.77058657, -0.65992081],
       [-1.73473402, -0.85951427],
       [ 1.21530606, -0.27942699],
       [ 0.37146484,  1.57464784],
       [ 0.13101932,  1.17557222],
       [ 0.55048135, -0.073215  ],
       [ 0.65268228, -0.76005108],
       [-0.12524786,  1.16172152],
       [ 0.9416221 , -0.8284188 ],
       [ 0.72962605, -0.78012446],
       [-0.7595301 , -1.02429527],
       [ 0.42537401,  2.05365336],
       [ 0.41686597,  1.17237934],
       [-1.36156287, -0.58182547],
       [-1.63215702, -0.80053828],
       [ 0.16868097,  1.78349137],
       [-1.25198849, -1.21104408],
       [ 0.45461854,  1.24370166],
       [-1.99356038, -0.90548851],
       [ 0.84572607,  1.2164603 ],
       [ 1.11029307, -0.23099879],
       [-0.56892205, -0.70265972],
       [ 0.93402653,  1.29095874],
       [ 0.94118216, -0.72375673],
       [ 0.23509561,  0.96041989],
       [ 0.60301693,  1.08704203],
       [-1.1171891 , -1.21457231],
       [ 1.21399433,  1.29509665],
       [-1.25249385, -0.47819655],
       [-0.986743  , -0.98144191],
       [-1.7860204 , -1.39231882],
       [ 0.55320627,  1.41715403],
       [-2.0662249 , -0.69934998],
       [-1.29343007, -0.77757608],
       [ 0.27276956,  0.9418664 ],
       [ 0.5434236 , -0.41841969],
       [ 1.44526084,  0.0087187 ],
       [-0.34167386,  1.31912378],
       [-1.77472219, -0.84542156],
       [ 0.8071665 ,  1.92415722],
       [-1.41813112, -0.95059979],
       [ 0.26971005,  1.01953102],
       [ 0.90067843, -0.28122456],
       [ 0.65661936,  0.89004119],
       [ 0.42245075, -0.4677546 ],
       [-1.75542164, -0.6517002 ],
       [ 0.57522939,  1.23645334],
       [ 0.4217509 ,  1.70837732],
       [-1.23985549, -0.31419264],
       [-1.50342086, -0.14237115],
       [ 0.77945616,  1.27706047],
       [ 0.9279614 , -0.16082871],
       [-1.39989229, -0.77754158],
       [ 0.94719192, -0.41984737],
       [-2.06564945, -0.83849631],
       [-0.71883787, -0.62819834],
       [-1.17765783, -1.01506935],
       [ 0.70341832, -0.73729614],
       [-1.26359243, -0.85907062],
       [-1.08899436, -0.88801288],
       [ 1.132047  , -0.55152432],
       [ 0.52620981,  1.43321291],
       [ 0.74377108, -0.4080321 ],
       [ 0.77533462, -0.82445019],
       [ 1.43342856, -0.2291756 ],
       [ 0.72870678,  1.06563353],
       [-1.07957503, -1.20998434],
       [ 0.37227198, -0.76930174],
       [ 0.16267793,  1.55547825],
       [ 0.15970539,  1.31058228],
       [-1.7069593 , -0.84258607]])
In [19]:
data[['x','y']]=X
In [20]:
Kmeans=KMeans(n_clusters=2,random_state=42)
Kmeans.fit(X)
Out[20]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=2, n_init=10, n_jobs=None, precompute_distances='auto',
       random_state=42, tol=0.0001, verbose=0)
center=Kmeans.clustercenters center
In [21]:
center=Kmeans.cluster_centers_ 
center
Out[21]:
array([[ 0.63701655,  0.42500526],
       [-1.32303438, -0.88270323]])
In [22]:
label=Kmeans.labels_
label
Out[22]:
array([1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
       0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
       1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
       1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
       0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
       0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
       0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,
       0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,
       0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
       0, 1])
In [23]:
plt.scatter(data['x'],data['y'],c=label)
Out[23]:
<matplotlib.collections.PathCollection at 0x27938ef1d68>
In [30]:
SEE=[]
index=range(1,10)
for i in index:
    kmeans=KMeans(n_clusters=i,random_state=42)
    kmeans.fit(X)
    SEE.append(kmeans.inertia_)
    print(kmeans.inertia_)
400.0000000000001
156.41033617954912
44.05704845329278
36.85585101890133
30.98979911778676
25.240846029379913
22.70858764162133
19.8502123581499
17.33673390955418
In [31]:
plt.plot(index,SEE)
plt.xlabel('K')
plt.ylabel('SEE')
Out[31]:
Text(0, 0.5, 'SEE')
In [ ]:
 

2 comments:

  1. The article is so appealing. You should read this article before choosing the Big Data Solutions Developer you want to learn.

    ReplyDelete
  2. Your Affiliate Money Making Machine is ready -

    And getting it running is as simple as 1 . 2 . 3!

    It's super easy how it works...

    STEP 1. Input into the system which affiliate products you want to push
    STEP 2. Add some push button traffic (it ONLY takes 2 minutes)
    STEP 3. Watch the affiliate system explode your list and sell your affiliate products all on it's own!

    Do you want to start making money??

    Your MONEY MAKING affiliate solution is RIGHT HERE

    ReplyDelete

Featured Post

Ichimoku cloud

Here how you read a ichimoku cloud 1) Blue Converse line: It measures short term trend. it also shows minor support or resistance. Its ve...